Sentence Similarity Measuring by Vector Space Model Sentence Similarity Measuring by Vector Space Model

نویسندگان

  • U. L. D. N. Gunasinghe
  • W. A. M. De Silva
  • N. H. N. D. de Silva
  • A. S. Perera
  • W. A. D. Sashika
  • W. D. T. P. Premasiri
چکیده

In Natural Language Processing and Text mining related works, one of the important aspects is measuring the sentence similarity. When measuring the similarity between sentences there are three major branches which can be followed. One procedure is measuring the similarity based on the semantic structure of sentences while the other procedures are based on syntactic similarity measure and hybrid measures. Syntactic similarity based methods take into account the cooccurring words in strings. Semantic similarity measures consider the semantic similarity between words based on a Semantic Net. In most of the time, easiest way to calculate the sentence similarity is using the syntactic measures, which do not consider grammatical structure of sentences. There are sentences which have the same meaning with different words. By considering both semantic and syntactic similarity we can improve the quality of the similarity measure rather than depending only on semantic or syntactic similarity. This paper follows the sentence similarity measure algorithm which is developed based on both syntactic and semantic similarity measures. This algorithm is based on measuring the sentence similarity by adhering to a vector space model generated for the word nodes in the sentences. In this implementation we consider two types of relationships. One of them is relationship between verbs in the sentence pairs while the other one is the relationship between nouns in the sentence pairs. One of the major advantages of this method is, it can be used for variable length sentences. In the experiment and results section we have been included our gain with this algorithm for a selected set of sentence pairs and have been compared with the actual human ratings for the similarity of the sentence pairs. Keywords— Sentence Similarity, StanfordCoreNLP, Word Similarity, Semantic Similarity, Syntactic Similarity, WordNet

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amrita_CEN at SemEval-2016 Task 1: Semantic Relation from Word Embeddings in Higher Dimension

Semantic Textual Similarity measures similarity between pair of texts, even though the similar context is projected using different words. This work attempted to incorporate the context space of the sentence from that sentence alone. It proposes combination of Word2Vec and Non-Negative Matrix Factorization to represent the sentence as context embedding vector in context space. Distance and corr...

متن کامل

Short Text Similarity Measure Based on Double Vector Space Model

Short text similarity measure is the basis of classification and duplicate checking of the short texts. Allowing for the insufficient consideration of the sentence semantic and structure information in similarity calculation between two short texts, we propose a novel method of short text similarity calculation based on double vector space model on the basis of traditional vector space model. C...

متن کامل

Feature Combination for Measuring Sentence Similarity

Sentence similarity is one of the core elements of Natural Language Processing (NLP) tasks such as Recognizing Textual Entailment, and Paraphrase Recognition. Over the years, different systems have been proposed to measure similarity between fragments of texts. In this research, we propose a new two phase supervised learning method which uses a combination of lexical features to train a model f...

متن کامل

ITNLP-AiKF at SemEval-2017 Task 1: Rich Features Based SVR for Semantic Textual Similarity Computing

Semantic Textual Similarity (STS) devotes to measuring the degree of equivalence in the underlying semantic of the sentence pair. We proposed a new system, ITNLPAiKF, which applies in the SemEval 2017 Task1 Semantic Textual Similarity track 5 English monolingual pairs. In our system, rich features are involved, including Ontology based, word embedding based, Corpus based, Alignment based and Li...

متن کامل

Extractive Summarization using Continuous Vector Space Models

Automatic summarization can help users extract the most important pieces of information from the vast amount of text digitized into electronic form everyday. Central to automatic summarization is the notion of similarity between sentences in text. In this paper we propose the use of continuous vector representations for semantically aware representations of sentences as a basis for measuring si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014